Skip to main content

The Different Types of Genetic Tests

 The Different Types of Genetic Tests

Some say that the human genome is the only data set in healthcare that does not change, and that helps explain the recent popularity of genetic testing with more than 77,000 genetic tests currently in use and an average of 10 new tests entering the market daily.

“The human genome was mapped only fifteen years ago, but since then the adoption of genetic testing has skyrocketed. Much of this trend is explained by the critical role genetic testing plays in precision medicine (an approach to disease treatment and prevention that seeks to maximize effectiveness by taking into account individual variability in genes, environment, and lifestyle) as well as by advances in next-generation sequencing methods and concurrent reductions in sequencing costs,” wrote four healthcare professionals in a Health Affairs research article.

Discoveries in Genetics have Revolutionized Medical Science

The American Journal of Managed Care says that from a broader perspective, Genetic testing can potentially lead to improvements in population health and health equity and cut down on healthcare costs. The theory is that when specific populations are identified as being at greater risk of disease, targeted treatments will lead to better response rates and less healthcare waste.

“Discoveries in genetics have revolutionized medical science. With each new advance, the excitement around genetics and genomics testing continues to build,” wrote clinical service physician Ian Z. Chuang.

Once known for its use in paternity tests, prenatal testing, forensic evidence and genealogy usage, genetic testing is now used in everything from breast and ovarian cancer to age-related macular degeneration (AMD) to bipolar disorder to Parkinson’s disease to celiac disease to psoriasis.

“If the developments in genetics and computer technologies continue to progress at their current speed, history has shown us we can look forward to some amazing developments in human life in the very near future,” a research paper published in BioMed Research International concluded.

The History and Definition of Genetic Testing

DNAfit says that genetic science can trace its roots back to the 1860s and plant hereditary traits experiments by Gregor Mendel with the term “genetics” first used in 1905 by English biologist William Bateson.

Even though genetics as a theory was widely accepted by 1925, it wasn’t until the 1950s that the field opened after the discovery and study of DNA. In the last decade, genetic testing has gone mainstream, first with at-home ancestry DNA testing and then with the role molecular tests played during the COVID-19 pandemic.

The National Library of Medicine (NLM) says that genetic testing is a type of medical test that identifies changes in genes, chromosomes, or proteins.

“The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person’s chance of developing or passing on a genetic disorder,” explained the NLM.

The NLM says genetic testing specifically involves looking for changes in:

  • Genes: Gene tests study DNA sequences to identify variations (mutations) in genes that can cause or increase the risk of a genetic disorder. Gene tests can be narrow or large in scope, analyzing an individual DNA building block (nucleotide), one or more genes, or all a person’s DNA (which is known as their genome). 

  • Chromosomes: Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.

  • Proteins: Biochemical genetic tests study the amount or activity level of proteins or enzymes; abnormalities in either can indicate changes to the DNA that result in a genetic disorder.

#Genetic #GeneticTesting, #DNAAnalysis, #GeneticScreening, #CarrierTesting, #PrenatalTesting, #NewbornScreening, #PredictiveTesting, #DiagnosticTesting, #PharmacogeneticTesting, #AncestryTesting, #MolecularGenetics, #GenomicMedicine, #PrecisionMedicine, #InheritedDisorders, #GeneticCounseling, #GeneticHealth, #PersonalizedMedicine, #DNAResearch, #GeneTesting, #MedicalGenetics,


Comments

Popular posts from this blog

Fruitful innovation

Fruitful innovation: Transforming watermelon genetics with advanced base editors The development of new adenine base editors (ABE) and adenine-to-thymine/ guanine base editors (AKBE) is transforming watermelon genetic engineering. These innovative tools enable precise A:T-to-G and A:T-to-T base substitutions, allowing for targeted genetic modifications. The research highlights the efficiency of these editors in generating specific mutations, such as a flowerless phenotype in ClFT (Y84H) mutant plants. This advancement not only enhances the understanding of gene function but also significantly improves molecular breeding, paving the way for more efficient watermelon crop improvement. Traditional breeding methods for watermelon often face challenges in achieving desired genetic traits efficiently and accurately. While CRISPR/Cas9 has provided a powerful tool for genome editing, its precision and scope are sometimes limited. These limitations highlight the need for more advanced gene-e...

Genetic factors with clinical trial stoppage

Genetic factors associated with reasons for clinical trial stoppage Many drug discovery projects are started but few progress fully through clinical trials to approval. Previous work has shown that human genetics support for the therapeutic hypothesis increases the chance of trial progression. Here, we applied natural language processing to classify the free-text reasons for 28,561 clinical trials that stopped before their endpoints were met. We then evaluated these classes in light of the underlying evidence for the therapeutic hypothesis and target properties. We found that trials are more likely to stop because of a lack of efficacy in the absence of strong genetic evidence from human populations or genetically modified animal models. Furthermore, certain trials are more likely to stop for safety reasons if the drug target gene is highly constrained in human populations and if the gene is broadly expressed across tissues. These results support the growing use of human genetics to ...

Genetics study on COVID-19

Large genetic study on severe COVID-19 Bonn researchers confirm three other genes for increased risk in addition to the known TLR7 gene Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with other research teams from Germany, the Netherlands, Spain and Italy, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19. The results have now been published in the journal " Human Genetics and Genomics Advances ". Even though the number of severe cases following infection with the SARS-CoV-...