Skip to main content

Reproductive genetic carrier screening

Reproductive genetic carrier screening: A tool for reproductive decision-making


Couple-based reproductive genetic carrier screening is an accessible and effective method of reproductive decision making, according to a recent study published in the New England Journal of Medicine.1

Childhood-onset autosomal recessive and X-linked conditions have been linked to over 2500 genes, with most parents carrying these genes only learning about their carrier status after childbirth. Reproductive decision making may be improved through the use of reproductive genetic carrier screening.

The availability of reproductive genetic carrier screening has been improved by commercial providers, but health care professionals must remain aware about how to best offer screening and how their patients may view this option.

This critical information has been detailed by the Australian Reproductive Genetic Carrier Screening Project.2 The project included over 10,000 reproductive couples and provided reproductive genetic carrier screening for at least 1281 genes.

Investigators conducted a study to evaluate screening uptake, the rate of couples with an increased risk of having an affected child, reproductive decisions, psychosocial outcomes, and screening acceptability.1 Participating health care centers offered free reproductive genetic carrier screening to their patients.

Reproductive couple included 2 individuals of the opposite sex who were the genetic parents in pregnancy. Those in the analysis were aged 18 years or older and planning to conceive or at under 10 weeks’ gestation. Demographic data was obtained from participants at enrollment.

The panel covered 1300 genes linked to 750 childhood-onset autosomal recessive or X-linked conditions. Most of these conditions had available treatment, but this treatment was often limited in availability or burdensome. After revision, 1281 genes were included in the final panel.

Autosomal genes were assessed in male and female partners while X-linked genes were only assessed in female partners. Exome sequencing and a targeted gene panel were used during testing.

Increased risks were determined based on the presence of a pathogenic or likely pathogenic variant in the same autosomal gene across both partners and a pathogenic or likely pathogenic variant in an X-linked gene for the female partner. When these criteria were not met, the odds were considered “low chance.”

Participants with an increased risk of having an offspring with a genetic condition received genetic counseling, with referral to a subspecialist given when necessary. During genetic counseling, participants were told about reproductive options available through the study.

Reproductive genetic carrier screening was given to 9107 couples. Couples who were invited to participate but did not undergo screening were more often residing in the most socioeconomic disadvantaged area, had a lower education level, and had 2 or more children.

Low odds of having a child with a genetic condition were reported in 96.1% of couples who received reproductive genetic carrier screening, while new identification of an increased chance was reported in 1.9% and knowledge prior to screening in 2%. Of the 180 couples with knowledge prior to the screening, 4 learned about an increased risk of a different condition.

Having previously been assumed to have the same level of risk as the general population before screening was reported in 78.3% of couples with a newly identified risk. The remaining 21.7% had family history or consanguinity leading them to be considered at an increased risk.

Of newly identified couples with current pregnancy when receiving the result, 64% had the fetus genetically tested, with 24 of these 29 couples receiving normal test results. In impacted pregnancy was found in 5, with 4 deciding to terminate the pregnancy.

Sixteen of the newly identified couples did not elect to receive testing. Of these, 1 had a miscarriage, 2 had babies with a condition identified in genetic screening after birth, 4 had unaffected babies, 4 had ongoing pregnancy during the assessment, and 5 had unknown outcomes.

These results highlighted the efficacy and availability of providing reproductive genetic carrier screening to a diverse population. Investigators noted reproductive genetic carrier screening is acceptable for patients and providers when delivered using this method.

carrier screening, genetic testing, reproductive health, inherited disorders, preconception care, prenatal testing, family planning, genetic counseling, rare diseases, autosomal recessive, X-linked disorders, carrier status, cystic fibrosis, thalassemia, Tay-Sachs disease, sickle cell anemia, genetic risk, next-generation sequencing, personalized medicine

#CarrierScreening, #GeneticTesting, #ReproductiveHealth, #InheritedDisorders, #PreconceptionCare, #PrenatalTesting, #FamilyPlanning, #GeneticCounseling, #RareDiseases, #AutosomalRecessive, #XLinkedDisorders, #CarrierStatus, #CysticFibrosis, #Thalassemia, #TaySachsDisease, #SickleCellAnemia, #GeneticRisk, #NGS, #PersonalizedMedicine, #ReproductiveGenetics

International Conference on Genetics and Genomics of Diseases 

Comments

Popular posts from this blog

Fruitful innovation

Fruitful innovation: Transforming watermelon genetics with advanced base editors The development of new adenine base editors (ABE) and adenine-to-thymine/ guanine base editors (AKBE) is transforming watermelon genetic engineering. These innovative tools enable precise A:T-to-G and A:T-to-T base substitutions, allowing for targeted genetic modifications. The research highlights the efficiency of these editors in generating specific mutations, such as a flowerless phenotype in ClFT (Y84H) mutant plants. This advancement not only enhances the understanding of gene function but also significantly improves molecular breeding, paving the way for more efficient watermelon crop improvement. Traditional breeding methods for watermelon often face challenges in achieving desired genetic traits efficiently and accurately. While CRISPR/Cas9 has provided a powerful tool for genome editing, its precision and scope are sometimes limited. These limitations highlight the need for more advanced gene-e...

Genetic factors with clinical trial stoppage

Genetic factors associated with reasons for clinical trial stoppage Many drug discovery projects are started but few progress fully through clinical trials to approval. Previous work has shown that human genetics support for the therapeutic hypothesis increases the chance of trial progression. Here, we applied natural language processing to classify the free-text reasons for 28,561 clinical trials that stopped before their endpoints were met. We then evaluated these classes in light of the underlying evidence for the therapeutic hypothesis and target properties. We found that trials are more likely to stop because of a lack of efficacy in the absence of strong genetic evidence from human populations or genetically modified animal models. Furthermore, certain trials are more likely to stop for safety reasons if the drug target gene is highly constrained in human populations and if the gene is broadly expressed across tissues. These results support the growing use of human genetics to ...

Genetics study on COVID-19

Large genetic study on severe COVID-19 Bonn researchers confirm three other genes for increased risk in addition to the known TLR7 gene Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with other research teams from Germany, the Netherlands, Spain and Italy, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19. The results have now been published in the journal " Human Genetics and Genomics Advances ". Even though the number of severe cases following infection with the SARS-CoV-...