Skip to main content

Heart Disease Risk

The Role of Genetics in Cholesterol, Heart Disease Risk


At the 2024 Family Heart Global Summit, Helen Hobbs, MD, investigator for the Howard Hughes Medical Institute and professor of internal medicine and molecular genetics at the University of Texas Southwestern Medical Center, shared groundbreaking insights into the genetic roots of high cholesterol and offered a detailed look at how genetic discoveries are reshaping the landscape of cardiovascular disease prevention and treatment.

Her presentation centered on decades of research into familial hypercholesterolemia (FH) and cholesterol regulation, and highlighted key topics like the French Canadian deletion, low-density lipoprotein receptor (LDLR) mutations, and the implications of lifelong low LDL cholesterol levels on coronary heart disease (CHD).

The French Canadian Deletion: A Historical Genetic Anomaly

Hobbs began by recounting one of her most compelling discoveries: the French Canadian deletion. This mutation, which affects the LDLR gene, has a particularly high prevalence among French Canadians, with 63% of individuals with heterozygous FH in Quebec, Canada carrying this specific deletion.1

This mutation is a product of genetic isolation. Between 1608 and 1763, around 8000 settlers from France established themselves in what is now Quebec. Due to linguistic and geographical separation from surrounding populations, these settlers formed a genetically isolated group. Over time, the mutation that disrupts the LDL receptor—essential for clearing LDL cholesterol from the blood—became common among this population.

“We figured out that they were missing part of the gene, the part that goes to the promoter that turns the gene on in the very first part of the gene, so no protein was being made,” Hobbs explained.

She identified this specific mutation during her early research while examining the genetic profiles of people with FH, after she noticed that almost everyone in the sample with this deletion had French ancestry. This mutation provided a critical piece of the puzzle in understanding how FH manifests at a population level and underscored the role of genetic bottlenecks in amplifying certain mutations.

The Power of Low LDL: Lifelong Protection Against Heart Disease

A central theme of Hobbs’ presentation was the protective effect of lifelong low LDL levels on coronary heart disease (CHD). Drawing on data from the Dallas Heart Study, she presented compelling evidence that individuals with naturally low LDL levels due to genetic mutations are significantly less likely to develop CHD.

In her presentation, Hobbs highlighted a significant discovery related to genetic mutations in the PCSK9 gene, which plays a crucial role in cholesterol regulation. She explained that 2% of Black or African American individuals in the Dallas Heart Study carried mutations in PCSK9—a gene that promotes LDL receptor degradation—and that they had 40% lower LDL cholesterol levels compared with those without the mutation.2 These participants with the PCSK9 mutation also saw a 28% reduction in mean LDL cholesterol after using statins, leading to an astounding 88% reduction in CHD risk. A similar sequence variation was found in 3% of White participants, though the effect on LDL reduction was more modest. patients with the mutations who used statins saw a 15% reduction in LDL cholesterol and a 46% reduction in CHD risk—a smaller but still significant result.

The findings from both groups reinforced a central question in Hobbs’ research: what is the long-term effect of having low LDL cholesterol from birth on CHD risk? By identifying these genetic mutations and their effects, her team was able to draw a direct link between lifelong low LDL levels and a dramatic reduction in CHD.

Genetic Discoveries Pave the Way for Future Therapies

PCSK9 has also become a focal point in cholesterol management research, as mutations in PCSK9 can either increase or decrease its activity. In individuals with loss-of-function mutations, PCSK9 is unable to degrade LDL receptors effectively, leading to significantly lower LDL levels. PCSK9 inhibitor therapies, first approved in 2015, have been shown to reduce LDL levels by as much as 60% and significantly lower the risk of CHD events.3 More recent developments, such as the siRNA-based drug inclisiran, offer a more convenient dosing schedule, requiring only 2 injections per year. However, Hobbs acknowledged the challenges patients face in accessing these therapies due to cost and availability.

Hobbs concluded her presentation by reflecting on how genetics has transformed our understanding of cholesterol metabolism and its connection to heart disease. Her research has not only identified key mutations, but also paved the way for innovative therapies that could change the trajectory of heart disease for millions. Looking at her major discoveries in the space of cholesterol management throughout her career, it is no surprise that Hobbs was honored with the Family Heart Pioneer Award during the summit.

While she emphasized that there is still much to learn, her presentation left the audience with a sense of optimism about the future of cholesterol management. In closing, Hobbs offered a message of perseverance, particularly to women in science and medicine. Reflecting on the challenges and rewards of her own journey, she emphasized the importance of staying committed to discovery, no matter the obstacles.

“Stay in the game,” Hobbs told women everywhere, encouraging them to keep pushing boundaries and contributing to advances that will shape the future of health care.

genetics, cholesterol, heart disease, LDL cholesterol, HDL cholesterol, triglycerides, familial hypercholesterolemia, LDL receptor gene, lipid metabolism, apolipoprotein E, ApoE, cardiovascular risk, gene mutations, genetic predisposition, prevention strategies, personalized medicine, statins, diet, lifestyle changes, risk factors,

#Genetics, #Cholesterol, #HeartDisease, #LDLCholesterol, #HDLCholesterol, #Triglycerides, #FamilialHypercholesterolemia, #LDLReceptorGene, #LipidMetabolism, #ApolipoproteinE, #ApoE, #CardiovascularRisk, #GeneMutations, #GeneticPredisposition, #PreventionStrategies, #PersonalizedMedicine, #Statins, #Diet, #LifestyleChanges, #RiskFactors

International Conference on Genetics and Genomics of Diseases 

Comments

Popular posts from this blog

Fruitful innovation

Fruitful innovation: Transforming watermelon genetics with advanced base editors The development of new adenine base editors (ABE) and adenine-to-thymine/ guanine base editors (AKBE) is transforming watermelon genetic engineering. These innovative tools enable precise A:T-to-G and A:T-to-T base substitutions, allowing for targeted genetic modifications. The research highlights the efficiency of these editors in generating specific mutations, such as a flowerless phenotype in ClFT (Y84H) mutant plants. This advancement not only enhances the understanding of gene function but also significantly improves molecular breeding, paving the way for more efficient watermelon crop improvement. Traditional breeding methods for watermelon often face challenges in achieving desired genetic traits efficiently and accurately. While CRISPR/Cas9 has provided a powerful tool for genome editing, its precision and scope are sometimes limited. These limitations highlight the need for more advanced gene-e...

Genetic factors with clinical trial stoppage

Genetic factors associated with reasons for clinical trial stoppage Many drug discovery projects are started but few progress fully through clinical trials to approval. Previous work has shown that human genetics support for the therapeutic hypothesis increases the chance of trial progression. Here, we applied natural language processing to classify the free-text reasons for 28,561 clinical trials that stopped before their endpoints were met. We then evaluated these classes in light of the underlying evidence for the therapeutic hypothesis and target properties. We found that trials are more likely to stop because of a lack of efficacy in the absence of strong genetic evidence from human populations or genetically modified animal models. Furthermore, certain trials are more likely to stop for safety reasons if the drug target gene is highly constrained in human populations and if the gene is broadly expressed across tissues. These results support the growing use of human genetics to ...

Genetics study on COVID-19

Large genetic study on severe COVID-19 Bonn researchers confirm three other genes for increased risk in addition to the known TLR7 gene Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with other research teams from Germany, the Netherlands, Spain and Italy, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19. The results have now been published in the journal " Human Genetics and Genomics Advances ". Even though the number of severe cases following infection with the SARS-CoV-...