Skip to main content

Deadly Genetics of Cholera

Experts discover the deadly genetics of cholera, which could be key to its prevention


Experts have used a cutting-edge computational approach to discover the genetic factors that make the bacteria behind cholera so dangerous—which could be key to preventing this deadly disease.

The breakthrough study, published in Nature Communications, is led by Professor Tania Dottorini from the University of Nottingham, in collaboration with Bangladesh's Institute of Epidemiology, Disease Control and Research (IEDCR), International Center for Diarrheal Disease Research, Bangladesh, and North South University.

The innovative research combines machine learning, genomics, genome-scale metabolic modeling (GSMM), and 3D structural analysis to uncover the genetic secrets of Vibrio cholerae—the bacteria behind cholera.

Cholera is a deadly diarrheal disease that continues to threaten millions worldwide, with up to 4 million cases and as many as 143,000 deaths each year. In Bangladesh alone, where cholera is a persistent danger, 66 million people are at risk, with more than 100,000 cases and 4,500 deaths annually.

Vibrio cholerae, is evolving in ways that make the disease more severe and harder to control, but until now, scientists have struggled to pinpoint the exact genetic factors driving these changes.

There is even less knowledge about the genomic traits responsible for the severity of cholera resulting from these lineages. About 1 in 5 people with cholera will experience a severe condition owing to a combination of symptoms (primarily diarrhea, vomiting, and dehydration).

In this new study, the U.K.-Bangladeshi research team analyzed bacterial samples from cholera patients across six regions in Bangladesh, collected between 2015 and 2021. They identified a set of unique genes and mutations in the most recent and dominant strain of Vibrio cholerae responsible for the devastating 2022 outbreak.

These genetic traits are linked to the bacteria's ability to cause severe symptoms like prolonged diarrhea, intense abdominal pain, vomiting, and dehydration—symptoms that can lead to death in severe cases.

Professor Dottorini said, "By identifying the key genetic factors that drive both the transmission and severity of cholera, we've taken a significant step toward developing more effective treatments and targeted interventions. This could save thousands of lives, not just in Bangladesh, but globally."

The findings of the study also revealed that some of these disease-causing traits overlap with those that help the bacteria spread more easily. The findings show how these genetic factors enable Vibrio cholerae to survive in the human gut, making it more resilient to environmental stress and more efficient at causing disease. This research highlights the complex interactions between the bacteria's genetic makeup and its ability to cause severe illness.

This new computational framework is a major step forward in the fight against cholera. By identifying the key genetic factors that make Vibrio cholerae more dangerous, scientists can develop better treatments and more targeted strategies to control and prevent future outbreaks. This breakthrough offers new hope for improving public health in Bangladesh and potentially saving countless lives worldwide.

Dr. Dottorini adds, "Our findings open the door to a new era of cholera research, where we can develop tools to predict and potentially prevent severe outbreaks before they occur. The ultimate goal is to translate these insights into real-world solutions that protect vulnerable populations.

"This breakthrough was only possible through the close collaboration between our U.K. and Bangladeshi partners. Together, we've combined cutting-edge computational tools with local expertise to tackle one of the most pressing public health challenges."

#CholeraResearch #GeneticBreakthrough #DiseasePrevention #PublicHealth #Vaccines #HealthInnovation #Epidemiology #Microbiology #OutbreakResponse #Therapeutics #GeneticResistance #EnvironmentalHealth #GlobalHealth #HealthStrategies #CholeraOutbreak #VaccineDevelopment #ResearchCommunity #PathogenGenetics #HealthSurveillance #ClinicalResearch

International Conference on Genetics and Genomics of Diseases 

Comments

Popular posts from this blog

Fruitful innovation

Fruitful innovation: Transforming watermelon genetics with advanced base editors The development of new adenine base editors (ABE) and adenine-to-thymine/ guanine base editors (AKBE) is transforming watermelon genetic engineering. These innovative tools enable precise A:T-to-G and A:T-to-T base substitutions, allowing for targeted genetic modifications. The research highlights the efficiency of these editors in generating specific mutations, such as a flowerless phenotype in ClFT (Y84H) mutant plants. This advancement not only enhances the understanding of gene function but also significantly improves molecular breeding, paving the way for more efficient watermelon crop improvement. Traditional breeding methods for watermelon often face challenges in achieving desired genetic traits efficiently and accurately. While CRISPR/Cas9 has provided a powerful tool for genome editing, its precision and scope are sometimes limited. These limitations highlight the need for more advanced gene-e...

Genetic factors with clinical trial stoppage

Genetic factors associated with reasons for clinical trial stoppage Many drug discovery projects are started but few progress fully through clinical trials to approval. Previous work has shown that human genetics support for the therapeutic hypothesis increases the chance of trial progression. Here, we applied natural language processing to classify the free-text reasons for 28,561 clinical trials that stopped before their endpoints were met. We then evaluated these classes in light of the underlying evidence for the therapeutic hypothesis and target properties. We found that trials are more likely to stop because of a lack of efficacy in the absence of strong genetic evidence from human populations or genetically modified animal models. Furthermore, certain trials are more likely to stop for safety reasons if the drug target gene is highly constrained in human populations and if the gene is broadly expressed across tissues. These results support the growing use of human genetics to ...

Genetics study on COVID-19

Large genetic study on severe COVID-19 Bonn researchers confirm three other genes for increased risk in addition to the known TLR7 gene Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with other research teams from Germany, the Netherlands, Spain and Italy, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19. The results have now been published in the journal " Human Genetics and Genomics Advances ". Even though the number of severe cases following infection with the SARS-CoV-...