Skip to main content

Genetic and Epigenetic discoveries

Blueprint for blueberry improvement: Genetic and epigenetic discoveries


Blueberries, part of the Vaccinium genus, are renowned for their nutritional benefits and increasing global demand. However, cultivation faces challenges like climate adaptability and fruit quality. Modern blueberries have a short domestication history, primarily through interspecific hybridization. These challenges necessitate deeper research into the genetic and epigenetic factors influencing blueberry traits.

Researchers from Peking University and Jilin Agricultural University, in collaboration with international experts, have made significant strides in blueberry genetic research. Published in Horticulture Research on May 14, 2024, their study presents a comprehensive analysis of blueberry genomic variation, marking a pivotal moment in agricultural science.

The study involved whole-genome re-sequencing and bisulfite sequencing on various blueberry cultivars to understand their genetic and epigenetic differences. Researchers identified significant gene introgression from V. darrowii and V. ashei into southern highbush (SHB), aiding its subtropical adaptation.

They discovered the VcTBL44 gene, crucial for regulating fruit firmness in SHB. Additionally, they found significant differences in DNA methylation patterns between northern highbush (NHB) and SHB, particularly in CHH-DMRs associated with transposon regulation. These findings offer a comprehensive understanding of the genetic and epigenetic mechanisms that have improved blueberry cultivars, providing valuable resources for future breeding programs aimed at enhancing fruit quality and climate resilience.

Dr. Haiyue Sun, a leading researcher in the study, stated, "Our research provides a detailed genetic and epigenetic map of blueberries, offering crucial insights for breeding programs. The identification of key genes like VcTBL44 paves the way for developing cultivars with improved fruit quality and climate adaptability."

The insights from this study have significant implications for blueberry breeding. The genetic and epigenetic resources identified can develop new cultivars more resilient to climate changes and superior in fruit quality. This research enhances our understanding of blueberry genetics and provides practical tools for breeders to meet the growing consumer demand for high-quality blueberries.

genetics, epigenetics, gene expression, DNA sequence, inheritance, environmental factors, lifestyle, CRISPR, gene editing, DNA methylation, personalized medicine, genetic traits, genetic mutations, gene regulation, chromatin, histones, RNA interference, genetic predisposition, gene therapy, transcription,

#Genetics, #Epigenetics, #GeneExpression, #DNASequence, #Inheritance, #EnvironmentalFactors, #Lifestyle, #CRISPR, #GeneEditing, #DNAMethylation, #PersonalizedMedicine, #GeneticTraits, #GeneticMutations, #GeneRegulation, #Chromatin, #Histones, #RNAInterference, #GeneticPredisposition, #GeneTherapy, #Transcription

International Conference on Genetics and Genomics of Diseases 




For Enquiries: genetics@healthcarek.com 

Get Connected Here 
--------------------------------- 
--------------------------------- 
facebook.com/profile.php?id=61555903296992 
tumblr.com/blog/dorita0211 

Comments

Popular posts from this blog

Fruitful innovation

Fruitful innovation: Transforming watermelon genetics with advanced base editors The development of new adenine base editors (ABE) and adenine-to-thymine/ guanine base editors (AKBE) is transforming watermelon genetic engineering. These innovative tools enable precise A:T-to-G and A:T-to-T base substitutions, allowing for targeted genetic modifications. The research highlights the efficiency of these editors in generating specific mutations, such as a flowerless phenotype in ClFT (Y84H) mutant plants. This advancement not only enhances the understanding of gene function but also significantly improves molecular breeding, paving the way for more efficient watermelon crop improvement. Traditional breeding methods for watermelon often face challenges in achieving desired genetic traits efficiently and accurately. While CRISPR/Cas9 has provided a powerful tool for genome editing, its precision and scope are sometimes limited. These limitations highlight the need for more advanced gene-e...

Genetic factors with clinical trial stoppage

Genetic factors associated with reasons for clinical trial stoppage Many drug discovery projects are started but few progress fully through clinical trials to approval. Previous work has shown that human genetics support for the therapeutic hypothesis increases the chance of trial progression. Here, we applied natural language processing to classify the free-text reasons for 28,561 clinical trials that stopped before their endpoints were met. We then evaluated these classes in light of the underlying evidence for the therapeutic hypothesis and target properties. We found that trials are more likely to stop because of a lack of efficacy in the absence of strong genetic evidence from human populations or genetically modified animal models. Furthermore, certain trials are more likely to stop for safety reasons if the drug target gene is highly constrained in human populations and if the gene is broadly expressed across tissues. These results support the growing use of human genetics to ...

Genetics study on COVID-19

Large genetic study on severe COVID-19 Bonn researchers confirm three other genes for increased risk in addition to the known TLR7 gene Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with other research teams from Germany, the Netherlands, Spain and Italy, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19. The results have now been published in the journal " Human Genetics and Genomics Advances ". Even though the number of severe cases following infection with the SARS-CoV-...